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Abstract. The warm-up cycle for an automobile engine with an insulated exhaust pipe between the engine and the 
catalytic converter is considered. The mathematical model for the heat transfer in the insulated exhaust pipe is 
presented. An efficient numerical algorithm for this model is also constructed and the numerical results are obtained 
and compared with measurements. Some possibilities for the geometrical optimization of the exhaust pipe are 
discussed. 

I .  I n t r o d u c t i o n  

The  use of  catalytic converters has been an important  method to reduce the CO,  N O  x and 
various hydrocarbons in the exhaust of  an automobile  engine. Because of actual and future 
government  regulations for emission control in industrial countries, there is a continuous 
urgency to improve  the efficiency of catalytic converters and predict the output.  

Dur ing the so-called warm-up cycle (2 or 3 minutes after every cold start) ,  the 
t empera tu re  of the converter  is too low for the catalytic reactions to take place and the 
conver ter ,  consequently operates  inefficiently. There  are different ideas to improve per- 
formance  of the catalytic converter  during the warm-up cycle. The practical experiments  to 
verify these ideas are in general very expensive and also on the other  hand very difficult 
because of the ext reme nonstat ionary character of the warm-up cycle. Nowadays,  the 
mathemat ica l  modelling and the numerical  solution with the help of a computer  is one of the 
most  efficient tools to solve such complicated technical problems.  

One  of the first mathemat ical  models  for the catalytic converter  was published in 1968 by 
Vardi and Biller [1] (one-dimensional model  without considering any chemical reactions). 
Since then, more  complicated mathematical  models  were discussed by many  authors (see K. 
Zygourakis  1989 [2] and H.-J .  Becker  1992 [3] for more  references). In [9], a mathemat ica l  
model  is presented for the warm-up cycle with an additional warming device at the beginning 
of the catalytic converter .  There  is also a new concept of  constructing an exhaust  pipe 
be tween  the engine and the catalytic converter  (Nording,  1991, [10]). The most  important  
features  of  this concept  are 

• insulated construction of an exhaust pipe with a double wall; 
• air-tight outer  wall with a carrying capacity; 
• inner wall f rom light-gauge steel sheet. 

The  main idea of this concept  is to prevent  as much as possible the heat produced by the 
engine f rom getting lost on the way to the catalytic converter  during the warm-up cycle. In 
this pape r  we deal with this concept  mathematical ly for the case of  rotational symmetry  and 
also we realize it numerically. 

The  paper  is organized as follows. In Section 2, we derive the mathematical  model  for the 
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heat transfer in an insulated exhaust pipe by consideration of conduction, convection and 
radiation of the heat and discuss the specific parameter settings. 

In Section 3, we describe the standard numerical algorithm to solve the two-dimensional 
heat equation. Also we formulate here a new and very efficient algorithm for the numerical 
solution of the boundary integral equation for the radiation heat transfer. 

In Section 4 the results of our numerical tests lead to some recommendations for 
geometrical optimization of such exhaust pipes and enable us to draw some conclusions. 

2. Mathematical model 

We consider a straight insulated exhaust pipe of the length Sire] whose cross-section is 
shown in Fig. 1. The radii R1, R2, R3, R 4 [m] describe the thicknesses of the inner (R 2 - R1) 
and ou te r  (R 4 - R 3 )  walls. The thickness of the insulating air split is R 3 - R  2. We consider 
the following physical processes in the exhaust pipe: 

1. Heat transfer due to forced convection in the inner pipe. 
2. Heat transfer due to conduction within and between both walls of the exhaust pipe. 
3. Heat transfer due to radiation in the insulating split. 

We neglect the heat conduction in the exhaust gas flow in the inner pipe and the natural 
convection of the air in the insulating split. 

We assume that the flow of the exhaust gas in the inner pipe is fully turbulent, there is no 
pressure gradient in the gas and the temperature of the exhaust gas is constant in each 
cross-section of the inner pipe. 

We will use cylindrical coordinates (r, ~b, z) with 

R1 I 
R2 
R3 

R4 

Fig. I. The cross-section of the exhaust pipe. 
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0~<r~<R4, 0~<¢<27r ,  O<-z<~S,  

because of the rotational symmetry of the problem. 
With the help of the previous assumptions we formulate the following subsections: 
1. The one-dimensional heat transfer equation for the temperature of the exhaust gas 

Tg~ = Tgas( t , z ) ,  t>~O, O<~z<~S. 

2. The two-dimensional heat transfer equation for the temperature of the walls and of the 
air in the insulating split 

T =  T ( t , r , z ) ,  t>~O, R I < - r < - R 4 ,  O<~z<~S. 

3. The boundary integral equation for the reflected part of the radiation energy on the 
outer surface of the inner wall and on the inner surface of the outer wall 

R = R(t, r, z ) ,  t >i 0, r = R 2 , R  3 , 0 ~< Z ~< S . 

The connection between the exhaust gas equation 1 and the heat transfer equation 2 will be 
formulated as a boundary condition for the heat transfer equation 2. The interface conditions 

[T] [ OT] r=R2,R3 ~=R2,R3 = 0 ; k ~ = Q(r, z) 

(Q(r,  z) ,  r = R2, R3, 0 <~ Z <~ S denotes the additional heat flux due to radiation) connect the 
heat transfer equation 2 with the radiation boundary integral equation 3. [ ] denotes the 
jump of the function on the given surface. On the boundary r = R 4 we formulate the 
boundary condition for the heat equation 2 due to natural convection and radiation. 

2.1. Exhaust  gas f low 

The input parameters for the exhaust gas flow are 
Tgas(t, 0)[K] the temperature of the exhaust gas at the inlet of the exhaust pipe; 
mgas(t)[kg/h ] input rate of the exhaust gas; 
Pgas[bar] pressure of the exhaust gas. 
The velocity of the exhaust gas at the inlet of the exhaust pipe can be computed by the given 
temperature and pressure from the input rate and from the state equation 

Pgas =- P/~Tgas (/~-specific gas konstant for air): 

mgas/~Tgas 
2 [m/s].  Vgas(t) - 3600 7rR lPgas 

Now we are able to model the heat transfer equation for the exhaust gas in the exhaust pipe 
T g a s ( t  , Z), t ~ 0 ,  0 ~ Z ~< S using the boundary data Tgas(t, 0) a n d  Ogas(t), t/> 0. The heat flux 
through the boundary of the pipe per square meter per second is given by the formula 

-H(t)(Tga~(t, z) - T(t, R1, z)) (1) 



36 S. R jasanow 

where T(t, R~, z )  is the temperature of the inner wall of the inner pipe. Now we derive the 
heat transport equation for Tga~(t, z). For this purpose we consider the cylinder 

{ ( r , w ) : O < ~ r < ~ R 1 ,  z < < . w < ~ z + a }  

of the small thickness a ~ 1 and assume that the temperature of the gas within this cylinder is 
constant and equal t o  Tgas( t  , z ) .  After a small interval of time At this cylinder is at the 
position z + Az with the temperature Tga~(t + At, z + AZ). The loss of the energy 

2 (Tgas(t, z) - Tga~(t + At, z + Az))'trRlOtpc 

(p denotes the density and c the specific heat for the exhaust gas) must be equal to the 
energy transfer through the boundary of our cylinder from exhaust gas to the steel wall of 
the pipe within the time At = AZ/Ogas(t ) 

2 (Tga~(t, z)  - Tga~(t + At, z + Az))~rRlaPC = H(t)(Tga~(t, z )  - T(t, R~, z))2~rRla At. 

For At--> 0 we obtain the first equation of our system: 

{OTga~(t , z)  0Tgas(t , z ) )  2 
p c l  ~ + v(t) Oz = ---~1 H(t)(Tgas(t '  z)  - T(t, R I, z))  , 0 < z <<- S (2) 

with the initial condition 

Tga~(0, z) = T O 

and the boundary condition 

Tgas(t, Z)lz= 0 = T ~ ( t ,  0 ) .  

Equation (2) is a non-linear partial differential equation of the first order. 

2.2. Conduct ion heat transfer 

The conduction heat transfer takes place between inner wall of the inner pipe and outer wall 
of the outer pipe. This domain is shown in cylindrical coordinates in Fig. 2. The heat transfer 
equation for T = T(t, r, z )  has the following form: 

t 

S z 

Fig. 2. The domain for the heat transfer equation (3). 
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OT 1 0 (rk OT] 0 (k  aT] 
pc at r Or \  --~r ! +-~z \ Oz / ' 

with the boundary conditions 

OT 
- k  -~r = H(Tg "s - T) 

OT 
k--~r = H ( T  o - T) + eo~r(T ~ - r 4) 

OT 
- k T z = o  

aT 

and the interface conditions 

IT] = 0 for r = R 2 ,  R 3 ; 

-~ - rJ=Q(r ' z )  for r = R 2 ,  R 3. 

2.3. Radiation 

R I < r < R 4 ,  0 < z < S ,  (3) 

for r = R  1 (see (1)) ; 

for r = R 4 (see Subsection 2.4) ; 

for z = O ;  

for z = S ; 

The  heat transfer due to radiation takes place in the insulating split and from the outer  
surface of the pipe to the neighborhood. This last radiation heat transfer we take into 
consideration with the help of the boundary condition on the surface r - -R4 :  

eo~r(T 4 - T4) .  (4) 

The  thermal radiation analysis in the insulating pipe is more complicated and we will derive a 
boundary  integral equation for the reflected part of radiation energy. We fix first two points x 
and y on the boundary 

F = F 1 U F  2 , 

where F1 is the outer  surface of the inner pipe and F 2 is the inner surface of the outer  pipe. 
We neglect the influence of both the circular covers 

{(r , z ) :Rz<~r<~R3,  z = 0 ,  S} .  

If we assume that we are dealing with a 'black body' ,  then the heat transmitted from 
differential element ds x to differential element dsy is 

dEx~r = 1~ ovT4(x ) (n x , Y --i xx)(n e y[ 4 X - -  y) ds x dSy 

(see f.e. [4]). The total energy leaving all of the surface F that reaches the element  dsy is 
then 
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1 fr (nx' y - x)(ny, x - -  y) Er~y - ~. K(X, y)o'T4(x) iX _y l4  

where x(x, y) denotes the visibility function: 

( ~  x i s v i s i b l e f r o m y ,  
K(x, y) = x is not visible from y .  

The  heat flux due to radiation in point y is given by 

Q(y)  = (Ydu)(y) - u(y) 

where 

u(y) = o'T4(y) , 

1 ( (nx, y - x)(ny, x - -  y) 
( ~ u ) ( y )  = - ~  Jr K(x,y)u(x) ds x . 

Ix - y l  4 

~x ~y~ 

It means that if we have the temperature  T(x) everywhere on the boundary F, then we are 
able to compute the radiation heat flux on the boundary through the evaluation of the 
boundary  integral operator  ~ at the point y. 

A body that is not black will absorb and emit less than the black body radiation: 

u(y) = eo-T4(y) , 0 < e < 1. (5) 

If we denote  the reflected part of the energy reaching the point y E F by R(y)  then the heat 
flux at y is 

Q(y)  = e((~u(x))(y)  + R(y))  - u(y) . (6) 

In order  to derive the equation for R(y)  we assume that diffuse reflection takes place or that 
the reflected part of the energy 

R_(y )  = (1 - e)((~u(x))(y)  + R(y))  

will be distributed on the same way as the radiated part: 

R(y)  = (~3R_ (x))(y) , 

or R(y)  = (1 - e)(N2u(x))(y) + (1 - e) (NR_(x) ) (y ) ,  

or ((5~ - (1 - e)N)R(x) ) (y)  = (1 - e)(N2u(x))(y) .  (7) 

This is a boundary integral equation (see also [5,6]) with respect to R(x) of the second kind 
with a symmetric kernel 

1 (n x, y - x ) ( n y ,  x - y) 
--~ K(x, y) ix _ yl4 = K(x, y) . 

For  the given temperature  we solve equation (7) and compute the function Q ( y ) =  Q(r, z) 
with the help of (6) to get the interface condition for the heat equation (3). 
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In order  to use the mathematical model derived in the previous subsections for the 
practical computations,  we have to discuss the choice of all specific parameters  used in the 
model.  We have three different materials: exhaust gas, steel and air in the insulating 
split. 

Exhaust  gas 
For  the exhaust gas flow in the inner pipe we need the following physical parameters:  the 
heat transfer coefficient H(t) and the product pc. The correct physical parameters for the 
exhaust gas can be obtained from the corresponding parameters for the components  of the 
exhaust gas with the help of tables of data (see f.e. [3,13]). As agreed with the Firm H. 
Gillet G m b H  we have used the values for air. 

The  heat transfer coefficient H[J/(m2sK)] is defined by (see f.e. [4]) 

Nu k 
H =  2R~ (8) 

where Nu denotes the Nusselt number,  k[J/(msK)] the thermal conductivity and 2R 1 is the 
diameter  of the inner pipe. We use one of the empirical formulae for the thermal 
conductivity k (see [11]) 

9.71 ( Tgas + 291.0~ 3/2 
k - Tgas + 416.0 2ff-3~-0 ! " (9) 

and the Di t tus -Boel te r  equation for the Nusselt number  

Nu = 0.023 Re °8 Pr °4 

where 

2R1 Vgas(t) 
Re = Re(t) = v(t) 

is the Reynolds number  and 

Pr = 0.689 

denotes  the Prandtl number.  The exponent  on the Prandtl number  is chosen, since the 
process now is heating. We neglect the entrance effects by the definition of the Nusselt 
number.  

The  viscosity of the gas v(t) varies with the average t e m p e r a t u r e  Tgas(t) and can be 
obtained from the following table and from linear interpolation in-between. 

The product  pc can be given by the formula 

Table 1. Viscosity of the air for various values of temperature 

v- 106[m2/s] 15.68 25.9 37.9 51.3 66.2 82.3 99.3 117.8 138.6 159.1 
T~as[K ] 300 400 500 600 700 800 900 1000 1100 1200 
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1.07 × 103pgas 
pc -- [J / (m3k)] .  (10) 

RTgas(t) 

Steel 
We use the constants 

pc = 35958.0 [J/(m3K)] 

for the product  of the density and specific heat of  the steel V2A and 

k = 17.0 [J /(msK)] 

for its thermal  conductivity. The emissivity e 0 of  the outer  wall of the outer  pipe is assumed 
to be independent  of  wavelength (our pipe is so-called gray body).  We have used the value 

e 0 = 0.9 

and o" denotes  in (4) the Bol tzmann constant 

~r = 5.669 x 10 -8 [J/(mZsK4)].  

The  heat  t ransfer  coefficient H can be modeled for r = R 4 due to natural convection as 
follows: 

Nu k 
n -  

Ol 

where  Nu is the Nusselt number  

Nu = 0.59(Gr Pr) °'28 , 

k is the thermal  conductivity of the air and a is the characteristic length: 

S for the vertical position, 
a = 2R 4 for the horizontal position. 

The  Grashof  number  Gr is given by 

3 

Gr = ~ ( T -  To), 

where g [m/ s  2] denotes the acceleration due to gravity and v is the kinematic viscosity. The 

Prandtl  number  Pr is again equal to 0.689. 
The  emissivity e in equations (7) will be found in Subsection 4.1 by comparison of the 

numerical  tests with the results of the measurements .  

3. Numerical algorithm 

The  numerical  method for the systems (2), (3), (7) is organized as follows: 

1. We choose the t ime step r > 0 and both the space meshes h 1 in z-direction and h 2 in 

r-direction, where 
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h I = S / N  1 and h 2 = ( R  4 - R 1 ) / N  2 . 

2. We compute H(t )  and pc for the exhaust gas with the help of (8), (9) and Table 1 for 
the given temperature  Tgas(t  , z )  and T(t, r, z)  at the time point t = mr,  m = 0 , . . .  

3. We solve equation (2) as in Subsection 3.1 to get the temperature  Tgas(t  + r ,  Z) and 
define the boundary condition for equation (3) on the boundary r = R 1. 

4. We compute  the right-hand side of the boundary integral equation (7) with the help of 
the given temperature  T(t, r, z ) ,  r = R 2, R 3 . 

5. We solve the boundary integral equations (7) (Subsection 3.2) and compute the 
function Q(r,  z), r = R2, R 3 with the help of (6). After  that we use this function in the 
interface condition for equation (3) on the boundaries r = R 2, R 3. 

6. We compute H(t )  on the boundary r = R 4 and rewrite the boundary condition for 
equat ion (3) on this boundary in the form 

OT 
k - ~ r  = f f l (T o - T ) ,  

T 4 _ T 4 
ff-I= H( t )  + eoa T o _  T - H( t )  + e°cr(Ta° + T2° T + To T2 + T3) . 

This boundary condition is now linearized. 
7. Now we compute the heat conduction coefficient for the air in the insulating split and 

solve equation (3) to get T(t + r, r, z)  (Subsection 3.3). 
8. When m <~m . . . .  we repeat  the algorithm beginning from step 2. 

3.1. Numer ica l  solut ion o f  the exhaust  f l ow  equation 

We will use the usual differential scheme [14] for equation (2): 

pc[Tgas(t~ + r, zk )  - Tgas(t , Zk) Tgas(t + r, zk) -- Tgas(t + r ,  Zk_l).Xl 
d- Ogas 

7 h 1 

2 
- g l  H(t)(Tga~(t + r, Zk) -- T(t, g 1, Zk) ) , 

o r  

a l  a2 
Tgas(t  q- r ,  g k )  - -  a l  + a2 + a3 Tgas(t  , z/~) q- a l  q_ a2 -t- a 3 

a3 
+ T(t, R1, Zk) 

a 1 -t- a 2 q- a 3 

Tgas(t  + r ,  Z k _ l )  

p c  pCO gas 2 
a l  -- a2 = ' a3 = -~1 H( t )  , r ' h 1 

k = 2 , . . . , N 1 + 1 ;  

Tg~(t  + r, z , )  = Tga~(t + r, 0 ) ,  

Tgas (0  , Z k )  = T O , k = 1 , . . .  , N 1 + 1.  
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This differential scheme approximates equation (2) with first-order accuracy and it is stable. 
The number of arithmetical operations is of the capital order O(N1) per time step. We 
remark that Tgas(t + "r, S) is one of our most important output values. 

3.2. Numerical solution o f  the boundary integral equation 

We will use the piecewise constant functions 

q~)(z)  = {~ (r' q~' z) E F~) 
otherwise,  i = l  . . . . .  N 1, a = l , 2  

with 

F(i)={(r ,q~,z):r=R~+,,z i<z<zi+l ,~ , 0 - < ~ < 2 ~  "} 

for the approximation of the solution of the boundary integral equation (7): 

N1 N1 

R(r, z) ~- E Yll)~P}a)(z) + ~] Y}2)q~}2)(z) = qblYl + ~2Y2, 
i=1 i=1 

~ , = ( ~ p ~ )  . . . . .  ~p(N~), y~ ~ R  N1, a =  1 ,2 .  

The same form can be used for the approximation of the function u on the right-hand side of 
equation (7) 

u(t, z) ~ (I)lU 1 -~- (I)2u 2 

where the components of the vectors u 1 and u 2 can be computed as 

ul ~) = o-(0.5(T(t,R~+l,Zi) + T(t,R~+ 1,zi+1))) 4 , i =  1 . . . .  ,N1 ,  a = 1 ,2 .  (11) 

The Galerkin procedure for equation (7) leads to: 

Find Yl, Y2 E ~ ul such that Galerkin equations 

((5 ~ - ( 1 -  e)03)(CPay ~ +dP2y2), ~}~)) = (1-- e){Ne(dPlUl + dP2u2), p}~)) 

are fulfilled for all i = 1 , . . . ,  N1, a = 1, 2, where (,} denotes the L2-scalar product: 

(u,v) = £ vuds~. 

The Galerkin system of equations can be now rewritten in the form 

Ay = b , A ~ ~ 2N1 ×2N1, y , b ~ ~ 2N1 (12)  

( 'All A,2)  = , ( b , , b2 )  , A = \ A 2 1  A22] , y (yr ,  y2r)r b =  r r r 
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( Z k l ) i  j , (t) _ ( t , ) \ = ( l _ e ) f r  fr K(x 'y )  d s x d s y ' k ' l = l ' 2 ' i ' j = l '  " NI  
= ~ j  , ~  / ~) tJ) "" , , 

(bk) i ---- (1 - e) ~ ( ~  2((I)lU 1 q- (I)2u2))(X) ds x . 
3I" 

The  matrix of the system (12) can also be computed as 

A = 2 ' n ' h l  R ~ I - ( 1 - e ) ~ k B e l  B22,]' 

43 

Bll  
and we will use the Matrix B = Be 1 

b ~ ( 1 -  e)B2u.  

B12)x for the approximation of the right-hand side b: 
Bee 

(13) 

We are now dealing with the computation of the elements of the matrices Bk~, k, l = 1, 2. The 
matrix Bll  is equal to zero, because of the visibleness function 

K(x, y) = O, x, y E F ~ ,  

i.e. a convex body cannot radiate on itself. 
The  matrices B12 and B21 fulfill B12 = B2 T and the matrix B22 is symmetric i.e. B22 = B2T2 

because of the symmetry of the kernel of the operator  ~ .  But the most important  property 
of the matrices BIe and B2e is that they have Toeplitz structure. We consider first the 
elements of the matrix B12 (see Fig. 3): 

1 (n x, y - x)(ny, x - -  y) 
(B12)q=-~ fr~o fr~j> K(x' y) I x -  yl 4 dSx dSy ' 

or for 

X ---- R2(cos ~, sin ~o, Zx) r , 

n x = (cos ~, sin q~, 0) T , 

y = R3(cos 0, sin ~O, Zy) r , 

z 

Fig. 3. On the computation of the Matrix B12. 
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ny = - ( c o s  ~O, sin ~O, 0 ) r ,  

(n , ,  y - x) = R 3 cos(q~ - ~b) - g2 ,  (ny, x - y) = g 3 - g 2 cos(q~ - ~0), 

Ix - e l  2 = g~ + g~ + (z x - Zy) 2 - 2R2R 3 cos(q~ - ~b), 

~ ,  ~ - a r c c o s ( R 2 / R 3 ) < ~ q ~  <<-~b + arccos(R2/R3)  
K(x, y)  = , v  , e l s ewhere ,  

ds x = R z d~  d G ,  HSy = R 3 d ~  dgy , 

e2R3 f zi+hl f zi+hl f ~  frO+ (R2/R3) . . . . . .  
- -  dz  x dZy d~b d~b--a . . . . .  (R2/R3) f ( z x ,  Zy ,  t~, ~0) dq~ (B12)q - "17" z, z] 

with 

(R 3 cos(~o - ~b) - R z ) ( R  3 - R 2 cos(q~ - ~b)) 

f i G ,  Zy, 'h, q~) - (R~ + R 2 + (G - zy)  2 - 2RzR3 cos(~o - ~b)) 2" 

I t  is now easy to see the Toepl i tz  s t ructure o f  B 1 2 ( ]  ~ i) 

(B12)i 1 = (B12)l,]_i+ 1 = 4 R 2 R  3 s(a, b, c, d, e, ~)  dz  x dzy , (14) 

where  

fo ' a  cos2fl + b cos/3 + c 
s(a, b, c, d, e, q~) = (d + e cos/3)2 d/3 

2ad V ~  5 + eEtg 
a b - - - ~ -  2 

e 2 ~P + e V ~ - - e i  a r c t a n  d + e 

+ ( c  a d Z ] (  - e  sin ~o 
- e 2 / \ (d 2 - e-~(d--+ e cos ~) 

2 
+ (d 2 _ e2)3/2 arctan 

V ~  + eZtg ~ - )  

d + e  

a = - R  2 + R 3 ,  b = R~ + R~, c = - R 2 R  3 , 

d = R 2 + R32 + (z x - zy + (i - ] ) h l )  2, e = - 2 R 2 R  3, ¢ = arccos(r2 /R3) .  

T h e  matr ix  B22 has also the Toepl i tz  s t ructure and can be c o m p u t e d  as ( ] />  i) 

(B22)q = (B22)1,j_i+ 1 = 4R 4 s(a, b, c, d, e) dz  x d z y ,  (15) 

a = 1, b = - 2 ,  c = 1 ,  

d = 2R~ + (z x - Zy + (i - j ) h l )  2, e = - 2 R ~ ,  ~o = 2 arccos (R2 /R3) .  

It  is necessary  to  com pu te  only the e l e m e n t s  (B12) l j ,  (B22)1 j for  j = 1 , . . . ,  N 1 with the help 
o f  the numer ica l  in tegrat ion in (14) and (15). We have used the t rapezoidal  rule for  this 
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purpose.  The numerical work for the computation of the matrix A is now reduced to O ( N  1) 

and must be done only once before the time steps begin as an initial step. 
The next problem is to compute the right-hand side of equations (12) and to solve it. The 

matrix A of this equation is symmetric and positive definite (this is easy to see at least for 
e ~ l ) .  Therefore ,  we can use Cholesky decomposition leading to O(N31) arithmetical 
operations or Conjugate Gradient  Method (CGM) (see [7]). The convergence of the CGM 
depends on the spectral condition number of the Matrix C - 1 A ,  where C denotes the 
so-called preconditioning matrix. Our system matrix A is the result of the Galerkin 
procedure  for the integral operator  of the second kind and its condition number is expected 
to be bounded by N 1 ~  ~: 

condz(A ) = 0(1) ,  N1---, ~.  

We can therefore  use the CGM without preconditioning (C = I) for iterative solution of (12) 
and the number  of iterations required will be bounded by a constant with respect to N 1. The 
C G M  algorithm has the form: 

1. Y0 E ~n ; 

r o = A y  o - b ; 

W o = C - l r o  ; 

s O = W 0 ; 

2. for k = 0, 1 . . . .  (16) 

(rk, wk) 
Yk+l = Yk - O l k + l S k ,  O~k+l (Ash , Sk ) , 

rk+ 1 = r  k - o t k + x A s  k ;  

W k +  1 = C - l r k + l  ; 

(rk+ 1, Wk+l) 
sk+~ = Wk+l +/3k+~Sk,/3k+l (rk, wk) ' 

where n = 2N 1 and C = I for the system (12). The most expensive step of the algorithm (16) 
is now to compute the product  A s  k in each iteration. We will use the special structure of the 
matrix A (block Toeplitz structure) to construct an efficient algorithm for this purpose. The 
multiplication A s  h can be obtained by four multiplications of a Toeplitz matrices with vectors 
of the length N 1. The multiplication with the Toeplitz matrix Q of the dimension N 1 with a 
vector  can be realized as follows. We define the matrix Q of the dimension M = 2 m with 
2N 1 ~< M ~< 4N 1 and of the circulant structure in such a way that Q is placed as a Q u  block: 

(Q Q~I2~ 
It is well known [12] that the multiplication of the circulant matrix with a vector can be 
realized with only O ( M I n M ) =  O ( N  1 INN1) arithmetical operations using Fast Fourier  
Transform (FFT).  If we multiply the matrix Q with the vector (s r, 0) r we will get 
( (Qs)  r, u r )  where Qs is what we need and u is not useful for us. Since all other  steps in (16) 
need only O ( N  1) arithmetical operations and the number  of iterations required to reach the 
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accuracy e s is O(ln e s l ) ,  w e  get the total number  of operations to solve the system (12) is of 
the capital order  O ( N  1 In N 1 In e~ -I) which is nearly optimal for this problem. 

3.3. Numerical solution of  the heat equation 

The  numerical procedure for equation (3) is standard: We use a five-point differential 
scheme for this equation and approximate the boundary conditions in such a way that 
second-order  approximation is guaranteed also on the boundary. We compute necessary 
parameters  like heat conduction coefficient, heat transfer coefficients, additional heat flux 
due to radiation on the boundaries r = R2, R 3 and linearize the boundary condition on r = R 4 

with the help of the given temperature  T(t, r, z) at the previous time step. The implicit 
differential scheme with respect to time leads in this case to a system of linear equations of 
the dimension 

N =  (N1 + 1)(N2 + 1) .  

We use the CGM (16) for the iterative solution of this system in each time step using the 
preconditioning technique which is known in literature as MIC* (0) [8] or MAF, leading to a 
number  of arithmetical operations of O(N 5/4 In e~l),  where e h denotes the corresponding 
accuracy. Therefore  this step is most expensive in the whole procedure.  

4. Numerical  tests 

The  

1. 

2. 

numerical experiments were of two different kinds: 

To verify the mathematical model and the numerical procedure with the help of 
measurements provided by the Firm 'H. Gillet GmbH' ,  Edenkoben.  
To give some recommendations for geometrical optimization of the exhaust pipe with 
the help of the numerical results. 

4.1. Verification of  the model 

The  

R 1 = 0.0215 m ,  R 2 = 0.0225 m ,  R 3 = 0.026 m ,  R 4 = 0.0275 m ,  

The tests were done for the following two stationary situations: 

Test  1: Tgas(t, 0) = 380°C, ragas(t) = 24.5 kg/h,  Pgas = 1.05 ba r ,  

Test 2: Tgas(t  , 0 )  = 690°C, mgas(t) = 85 kg/h,  Pgas = 1.05 bar .  

We have used six measurement  points P1, • • •,  P6 with 

following 'real'  geometry was used for the measurements and for our tests: 

S = l m .  

Table 2. Measurements  for the test 1 

Test 1 Px P2 P3 P4 P5 P6 
T°C 287 258 240 163 140 140 
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Table 3. Measurements for the test 2 

Test 2 P1 P2 P3 /'4 P5 P6 
T°C 544 528 511 320 320 320 

Table 4. Results of computations for the test 1 

Test 1 
e P~ P2 P3 P4 1°5 /96 

0.25 289 268 249 149 139 129 
0.5 277 256 237 158 146 136 
0.75 266 244 228 166 153 142 

Table 5. Results of computations for the test 2 

Test 1 
e P, P2 P3 /'4 P5 P6 

0.25 572 551 531 289 279 269 
0.5 543 525 511 319 309 300 
0.75 525 509 486 352 339 320 

r = R2,  z = O.l m ,  O.5 m ,  O.9 m and  

r = R 4 , z  = 0 . 1 m ,  O . 5 m ,  O . 9 m .  

T h e  resu l t s  of  the  m e a s u r e m e n t s  a re  p r e s e n t e d  in the  Tab l e s  2 and  3. 

O u r  c o m p u t a t i o n s  have  shown tha t  the  emiss iv i ty  e in (5)  is one  of  the  mos t  i m p o r t a n t  

p a r a m e t e r s  of  the  w h o l e  mode l .  This  p a r a m e t e r  can change  f rom e = 0.25 ( p o l i s h e d  s tee l )  

o v e r  e = 0.5 ( shee t  s tee l )  to  e = 0.75 (ox id ized  s tee l ) .  Tab les  4 and 5 show the  resul ts  o f  the  

c o m p u t a t i o n s .  I t  is easy  to  see  tha t  the  c o m p u t a t i o n a l  resul ts  o b t a i n e d  for  e = 0.5 a re  ve ry  

c lose  to  the  m e a s u r e m e n t s  and  the re  is no  n e e d  to  use  o t h e r  p a r a m e t e r s  to ver i fy  the  mode l .  

4.2. Geometr ica l  op t imiza t ion  

T h e  a im of  ou r  n u m e r i c a l  tes ts  on  m o r e  real is t ic  da t a  p r e s e n t e d  by  Figs.  4 and  5 is to s tudy  

the  inf luence  of  the  th ickness  of  the  inner  p ipe  and  of  the  insula t ing  spli t  on  the  o u t p u t  

t e m p e r a t u r e  Tgas(t , S ) .  T h e  p res su re  of  the  exhaus t  gas is a s sumed  to be  cons t an t  Pgas = 
1.05 bar .  
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Fig. 4. Input temperature T(t, 0). 
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Fig. 5. Input rate of the exhaust gas mga,(t ). 
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Fig. 6. Output temperature Tgas(t, S) for variable thickness of the inner pipe. 
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Fig. 7. Output temperature Tgas(t, S) for variable thickness of the insulating split. 

The results of our computations are shown in the Figs. 6 and 7. Figure 6 shows the output 
temperature Tgas(t, S) for variable thickness of the inner pipe with constant thickness 
(3.5 mm) of the insulating split. Figure 7 shows the output temperature Tgas(t, S) for variable 
thickness of the insulating split. 
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Conclusions 

1. T h e  i n su l a t ed  exhaus t  p ipe  is much  m o r e  eff icient  t han  the  usual  one ,  bu t  also m o r e  

c o m p l i c a t e d  to  p r o d u c e  and  hence  m o r e  expens ive .  

2. F r o m  the  n u m e r i c a l  e x p e r i m e n t s  it  is seen  tha t  the  bes t  way  to inc rease  the  o u t p u t  

t e m p e r a t u r e  Tgas(t, S)  is to  r educe  the  hea t  capac i ty  o f  the  inner  p ipe .  

3. T h e  th ickness  of  the  insula t ing  spli t  is not  ve ry  i m p o r t a n t  for  the  o u t p u t  t e m p e r a t u r e  

and  can b e  chosen  f rom o t h e r  t echn ica l  cons ide ra t ions .  This  resul t  is o b t a i n e d  due  to  

the  c o n s i d e r a t i o n  of  the  r ad i a t i on  hea t  t ransfer .  

4. T h e  p r e s e n t e d  m a t h e m a t i c a l  m o d e l  and  numer i ca l  a lgo r i t hm can  be  used  now,  as a first 

p a r t  of  c o m p l e t e  m a t h e m a t i c a l  m o d e l  inc luding  the  exhaus t  p ipe  and  the  ca ta ly t i c  

c o n v e r t e r  i tself .  

5. T h e  p r e s e n t e d  a lgo r i t hm needs  only  few minu te s  of  C P U  t ime  on  I B M  R I S C / 6 0 0 0  for  

120 t ime  s teps ,  wi th  the  fo l lowing  d i sc re t i za t ion  p a r a m e t e r s :  N 1 = 200, N 2 = 40 - 95 and  

r = l s .  
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